Journal of Organometallic Chemistry, 306 (1986) 273–282 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METALLOMETHANES

XIII *. VIBRATIONAL SPECTRA AND FORCE FIELDS OF CYANOMERCURIOMETHANES

JANOS MINK **,

Institute of Isotopes of the Hungarian Academy of Sciences, POB 77, H-1525 Budapest (Hungary)

DIETRICH K. BREITINGER **, WOLFRAM KRESS, WILFRED MORELL and RAYMOND SENDELBECK

Institute of Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, D-8520 Erlangen (F.R.G.)

(Received November 20th, 1985)

Summary

Vibrational spectra with assignments and results of normal coordinate calculations for cyanomercuriomethanes $CH_{4-n}(HgCN)_n$ ($2 \le n \le 4$) are discussed. The valence force constants of the central C-Hg bonds are 2.149, 1.944, and 1.798 N cm⁻¹, while those of the Hg-CN bonds are 2.204, 2.123, and 2.162 N cm⁻¹, for n = 2, 3 and 4, respectively. All these force constants are lower than the corresponding constants for methylmercury cyanide (2.445 and 2.379 N cm⁻¹). The overall behaviour of these force constants as a function of the degree of mercuration n is quite similar in both the cyanomercuriomethanes $CH_{4-n}(HgCN)_n$ and methylmercuriomethanes $CH_{4-n}(HgCH_3)_n$ series with the difference that there are variations in the constants at higher values in the former series. The potential energy distributions indicate that the valence vibrations of the C-H, C=N, and Hg-CN bonds are almost independent of all other vibrations, which in turn are more or less strongly coupled.

Introduction

Vibrational spectra of cyanomercuriomethanes have been studied previously [1-4], and a few approximate force constants were obtained from a simplified

^{*} For part XII see ref. 10.

^{**} Authors to whom correspondence should be addressed.

calculation for $C(HgCN)_4 \cdot H_2O$ [3]. An X-ray structural study of $C(HgCN)_4 \cdot H_2O$ [6] revealed a nearly tetrahedral arrangement of four mercury atoms around the carbon atom, with the CHgCN fragments close to linearity. We present here our interpretations of the infrared and Raman spectra of $CH_{4-n}(HgCN)_n$ molecules $(2 \le n \le 4)$, together with the results of calculations of the force constants.

Experimental

The compounds were prepared by metatheses between potassium cyanide and the appropriate acetoxymercuriomethanes $CH_{4-n}(HgOAc)_n$ [5]. The IR spectra of the solids in KBr and CsI discs, and in Nujol mulls, were recorded with a Perkin–Elmer 621 spectrometer in the range 4000–200 cm⁻¹; the far infrared spectra of the compounds in polyethylene pellets were recorded with a Fourier-transform spectrometer Polytec FIR 30. The Raman spectra of the pure compounds, and of some solutions in dimethylsulfoxide, were recorded with a Cary 82 spectrometer with excitation by Spectra Physics 164 (Kr⁺) and 165 (Ar⁺) lasers.

Force constant calculations

Geometrical parameters used in the calculations (Table 3) were taken from X-ray [6] and neutron diffraction studies [7]. Averaged X-ray data [6] are used for C=N bond lengths, and estimated C-Hg and Hg-CN interatomic distances for CH(HgCN)₃ and CH₂(HgCN)₂ molecules. The bond angles around the central carbon atoms are taken as tetrahedral, and linear C-Hg-C=N arrangements are assumed.

A FORTRAN program was used for calculating the G matrices and for refining the force constants [8]. The initial force constants were taken from earlier calculations for CH_3HgCN [9] and $CH_{4-n}(HgCH_3)_n$ [10].

Since solution data are not available in most cases, mean values of the infrared and Raman frequencies from spectra of the solids were used as the basis for the force constant refinements. Raman solution data were available only for $C(HgCN)_4$ [2], and three fundamentals belonging to a_1 symmetry species were used for the refinement. The types of internal coordinates are shown in Fig. 1. The construction

Fig. 1. Internal coordinates of the molecules $C(HgCN)_4$ (I), $CH(HgCN)_3$ (II), and $CH_2(HgCN)_2$ (III). Coordinates ϵ' and ρ' refer to the CHgC' and HgCN out-of-plane deformations, respectively.

of symmetry coordinates is based on T_d , C_{3v} , and C_{2v} symmetries for C(HgCN)₄ (I), CH(HgCN)₃ (II), and CH₂(HgCN)₂ (III), respectively.

We attempted to refine the maximum number of force constants, including all diagonal elements in the F matrices in symmetry coordinate representation. Most of the off-diagonal force constants were constrained or were assumed to be zero. The experimental and calculated wavenumbers for the normal modes, together with the potential energy distribution (PED) of the symmetry coordinates between the normal modes are listed in Tables 4, 5, and 6 for C(HgCN)₄, CH(HgCN)₃ and CH₂(HgCN)₂, respectively.

The agreement between the experimental and calculated wavenumbers (Tables 4–6) is generally very good. In a few cases, especially for the $C(HgCN)_4$ molecule, the calculated fundamentals below 100 cm⁻¹ show poorer agreement with the experimental values; this is attributable to the high degree of singularity of the Jacobian matrices. A damped least-squares procedure was used for the force constant refinement to avoid convergency problems. The refined non-zero force constants in terms of internal coordinates are listed in Table 7.

TABLE 1

INFRARED AND RAMAN FREQUENCIES OF CH(HgCN)₃ (cm⁻¹)

IR	Raman	Assignment
(solid)	(solid)	-
a	2949vw	a ₁ CH stretch
2190vw	2183w	e CN stretch
2170vw	2167s	a_1 CN stretch
1020vw		373 + 646(e)
985vw	964vw, b)	
960vw	946vw, b)	e CH bend
675vs	676vw)	
646vs	646vw)	e CHg ₃ asym stretch
	600vw, b	$2 \times 303 (a_1)$
498s	505m	a_1 CHg ₃ sym stretch
400vs, b	393s, b	e HgC' asym stretch ^b
373sh		a ₁ HgC' sym stretch
	303s	a ₂ HgCN 0.0.p. sym bend
293s		e and a_1 HgCN i.p. bend
	289s	e HgCN o.o.p. bend
120s	120s	a_1 CHgC' i.p. bend
95vs	95s)	
90sh	}	e CHgC' i.p. bend
68s	67vs	a_1 CHg ₃ sym def, a_2 CHgC' o.o.p.
		sym bend
50vw	56vs	e CHg ₃ asym def
43vw	46vs)	
34w	35vs \	lattice
	26vs)	

^{*a*} Very weak and broad band in the IR spectrum. ^{*b*} C' refers to the carbon atom of the CN group. Assignments of bands in the range 400-289 cm⁻¹ based on results of calculations.

Discussion

On the basis of earlier experience with $C(HgCN)_4 \cdot H_2O$ [3], we assumed that there is practically no coupling between the CN stretching vibrations in the $C(HgCN)_4$ molecule. The calculated potential energy distribution also showed that

TABLE 2

IR	Raman	Assignments
(solid)	(solid)	
	2992m	b ₂ CH ₂ asym stretch
2955vw	2932s	$a_1 \operatorname{CH}_2$ sym stretch
2175vw		b_1 CN asym stretch
	2165vs	a_1^{12} CN sym stretch
	2117vw	a_1^{13} CN sym stretch
1370vw, b	1362w	$a_1 \text{ CH}_2$ scissoring
1180vw		$540 + 636 (b_1)$
1020vw		
995w	985m)	
960vw	966w)	$b_1 \operatorname{CH}_2$ wagging
810vw		a_2 CH ₂ twisting
660s		$b_2 \text{ CH}_2$ rocking
636s	639m	$b_1 \operatorname{CHg}_2$ asym stretch
600sh	605vw, b	$2 \times 304 (a_1)$
540s	542s	$a_1 \operatorname{CHg}_2 sym$ stretch
450sh	460w, b	
410sh	407sh	b_1 HgC' asym stretch
382vs, b	380s	a_1 HgC' sym stretch
311w, sh	304s	a_1, a_2, b_1, b_2 HgCN linear bend
	(165vw, b))	
(148m)		b_2 CHgC o.o.p. bend
114sh	102w	a_1 CHgC' i.p. bend
96s	88m	b_1 CHgC' i.p. bend
77sh		a_2 CHgC' o.o.p. bend
68sh	70vs	a_2 CHg ₂ scissoring
46m	41s)	
38sh	37s)	lattice modes
	· · · · · · · · · · · · · · · · · · ·	

INFRARED	AND	RAMAN	FREQUENCIES	OF CH ₇	$(HgCN)_{2}$	(cm^{-1})

TABLE 3

GEOMETRICAL PARAMETERS FOR CYANOMERCURIOMETHANES (bond lengths in pm, bond angles in °)

	C(HgCN) ₄ ^a	CH(HgCN) ₃	CH ₂ (HgCN) ₂	CH ₃ HgCN ^b
R(CHg)	205.5	206.3	206.3	208
d(HgC')	203.5	203	203	205
q(CN)	115.5	115.5	115.5	114
r(CH)	19 00.	109	109	110
α(HCH)		_	109.45	110.7
β (HgCH)	~	109.45	109.45	108.2
γ(HgCHg)	109.45	109.45	109.45	-

^a Mean values from X-ray study [6]. ^b Neutron diffraction study [7].

TABLE 4

EXPERIMENTAL AND CALCULATED WAVENUMBERS AND POTENTIAL ENERGY DISTRIBUTION (PED) FOR $C(HgCN)_4$ (I)

Assign	ment and approximate	Wavenum	per (cm ^{-1})	PED (×100)
descrij	ption of mode	obs. ^a	calcd.	
$\overline{a_1}$	C'N sym str	2168	2167.8	96q+4d
	HgC' sym str	407	408.3	89d + 4q + 3R
	CHg ₄ sym str	127	139	99R + 10d
е	HgC'N bend	310	306	$80\rho + 20\varepsilon$
	CHgC' linear bend	86.5	94	$58\varepsilon + 29\gamma + 16\rho$
	CHg ₄ sym def	52	43	$71\gamma + 22\varepsilon + 5\rho$
f_1	HgC'N bend	291	297.7	81 ho + 19arepsilon
	CHgC' linear bend	146	147.1	$81\varepsilon + 19\rho$
f_2	C'N asym str	2168	2168.2	96q + 4d
	CHg ₄ asym str	655	655.1	$69R + 45\gamma + 13\varepsilon$
	HgC' asym str	392	390.6	$94d + 6\gamma + 3q + 3R + 3\varepsilon$
	HgC'N bend	297	300.4	$82\rho + 13\varepsilon + 4R$
	CHgC' linear bend	102.5	106.5	$37R + 23\varepsilon + 22\gamma + 6\rho$
	CHg ₄ asym def	64.5	57.2	$49\varepsilon + 34\gamma + 11\rho$

^a Observed frequencies from refs. 1-3.

the symmetric and asymmetric CN stretching modes are not mixed with other vibrational modes (Tables 1 and 2). The other stretching modes have also very characteristic vibrational forms, except the CHg_4 asymmetric stretching, which involves strong deformation of the CHg_4 entity. The CHgC and HgCN linear bending modes are strongly coupled motions, but the most complicated forms appear for the two low-frequency vibrations of f_2 species, viz for the CHgC linear bending and CHg_4 asymmetric deformation modes.

The strongest vibrational coupling in CN stretching modes was observed with $CH(HgCN)_3$. The CHg_3 symmetric stretching mode is strongly mixed with CHgC linear bendings and CHg_3 deformation modes, while the CHg_3 asymmetric stretching vibration is involved in the strong coupling with HgCN linear bendings (Table 5).

For the CH₂(HgCN)₂ molecule the potential energy distribution (see Table 4) shows that all stretching modes are relatively pure vibrational motions, except for the CHg₂ symmetric stretching which couples strongly with the CHg₂ scissoring mode. As in the foregoing cases the two types of linear bending modes are much more mixed than the approximate descriptions suggest (Table 6). Table 7 also includes the force constants for CH₃HgCN [9]. Some of the stretching force constants, e.g. K_R and K_d , and stretch-stretch interaction force constants (F_R , F_d) show clear dependence upon the extent of mercuration.

It is of interest to compare the vibrational frequencies and force constants of cyanomercuriomethanes and methylmercuriomethanes [10]. All the CH and CH₂ stretching and deformation modes are considerably higher for II and III than for the corresponding methyl derivatives [10]. Consequently the CH stretching force constants K_r are 3–5% higher for cyano derivatives. The central carbon-mercury stretching fundamentals are 50–70 cm⁻¹ lower for methylmercuriomethanes except

TABLE 5

EXPERIMENTAL AND CALCULATED WAVENUMBERS AND POTENTIAL ENERGY DISTRIBUTION (PED) FOR CH(HgCN) $_3$ (II)

Assign	ment and approximate	Wavenum	ber (cm $^{-1}$)	PED (×100)
descrij	ption of mode	obs.	calcd.	
$\overline{a_1}$	CH str	2949	2949	99 <i>r</i>
	CN sym str	2168.5	2168.5	97q + 3d
	CHg ₃ sym str	501.5	501.2	$78\gamma\beta + 35\varepsilon + 27R + 1\rho$
	HgC' sym str	373	373	95d + 3q + 1R
	HgCN i.p. bend	293	293.4	$74\rho + 11\epsilon + 10\gamma\beta + 5R$
	CHgC' i.p. bend	120	120.7	$78R + 7\rho + 3\varepsilon$
	CHg ₃ sym def	67.5	67.7	$56\varepsilon + 17\rho + 22\gamma\beta + 5R$
a_2	HgCN 0.0.p. sym bend	303	303	$86\rho' + 11\epsilon'$
-	CHgC' o.o.p. sym bend	67.5	67.5	$88\epsilon' + 11\rho'$
е	CN asym str	2186.5	2186.5	96q + 4d
	CH bend	964	964	$104\beta + 5R$
	CHg, asym str	661	661	$82R + 24\gamma + 32\rho + 5\epsilon'$
	HgC' asym str	396.5	397	95d + 4q
	HgCN i.p. bend	293	294	$67\rho + 33\epsilon$
	HgCN 0.0.p. bend	289	289	$83\rho' + 16\varepsilon'$
	CHgC' o.o.p. bend	113	110.3	$45\gamma + 19\epsilon' + 20R$
	CHgC' i.p. bend	93.3	92.2	$65\epsilon + 2\epsilon'$
	CHg ₃ asym def	53	53	$57\epsilon' + 30\gamma + 11\rho$

TABLE 6

EXPERIMENTAL AND CALCULATED WAVENUMBERS AND POTENTIAL ENERGY DISTRIBUTION (PED) FOR CH₂(HgCN)₂ (III)

Assign	ment and approximate	Wavenumbe	r (cm ⁻¹)	PED (×100)
descrip	tion of mode	obs.	calcd.	
$\overline{a_1}$	CH ₂ sym str	2943.5	2943.5	99.7 <i>r</i>
-	CN sym str	2165	2165	96.5q + 4d
	CH_2 scissor	1366	1366	$93.1\dot{\beta} + 1R + 1r$
	CHg_2 sym str	541	540.9	$53R + 52\gamma + 13\varepsilon$
	HgC' sym str	381	381.2	$95d + 3q + 1\gamma$
	HgCN i.p. bend	307.5 ^a	307.5	$79\rho + 15\varepsilon + 6R$
	CHgC' i.p. bend	108	118.7	$45R + 26\gamma + 17\epsilon + 5\rho$
	CHg ₂ scissor	69	64.2	$54\varepsilon + 34\gamma + 14\rho$
<i>a</i> ₂	CH ₂ twist	810	810	100 <i>β</i>
-	HgCN 0.0.p. bend	307.5	307.5	$83\rho' + 17\epsilon'$
	CHgC' o.o.p. bend	77	79,3	$83\epsilon' + 17\rho'$
b_1	CN asym str	2175	2175	95.9q + 4d
	CH, wag	990.5	990.5	$108\beta + 10R$
	CHg ₂ asym str	637.5	637.5	$95R + 3\epsilon + 1d$
	HgC' asym str	408.5	408.4	95d + 4q
	HgCN i.p. bend	307.5	307.5	$79\rho + 20\epsilon$
	CHgC' i.p. bend	92	87.6	$77\epsilon + 21\rho + 3R$
b_2	CH ₂ asym str	2992	2992	99.8r
	CH_2 rock	660	660	$97\beta + 3\epsilon'$
	HgCN 0.0.p. bend	310	310	$69\rho' + 30\epsilon' + 1\beta$
	CHgC' 0.0.p. bend	156.5	156.5	$67\epsilon' + 31\rho' + 2\beta$

^a For HgCN linear bending modes only two experimental frequencies at 311 and 304 cm⁻¹ were found.

Fig. 2. Relationships of the C-Hg valence force constants $K_{\rm R}$ (**I**) and $K_{\rm d}$ (**O**) to the number of mercuration *n* in cyanomercuriomethanes $CH_{4-n}(HgCN)_n$.

for the symmetric stretching mode of $C(HgCH_3)_4$ [10]; that is why the central carbon-metal stretching force constants K_R are about 13% higher for the cyano derivatives. The higher stretching force constants around the central carbon atom suggest that the electron density in the bonds around this carbon atom is considerably higher for cyanomercuriomethanes than for methylmercuriomethanes.

It should be pointed out that the carbon-mercury force constants K_R and K_d are almost the same for Hg(CH₃)₂ [13] and CH₃HgCN [9]. The mean value of the CN stretching modes is highest for CH(HgCN)₃ in this series, leading to the highest K_q stretching force constant. Consequently the lowest K_d stretching force constant for the Hg-CN bond is obtained for this molecule.

The dependence on *n* of the force constants K_R and K_d for $CH_{4-n}(HgCN)_n$ is shown in Fig. 2. It is of interest that K_d shows a minimum at n = 3, and the same is true for the $CH_{4-n}(HgCH_3)_n$ series [10]. The C-Hg stretching force constants K_R decrease with increasing *n*. The sums of the two stretching force constants $K_R + K_d$ also decrease with increasing mercuration, which means the non-bonded metal-metal interaction should increase with increased mercuration. This finding applies to all the mercuriomethanes investigated so far.

In the $CH_{4-n}(HgCN)_n$ series the chemical shifts in the ¹H, ¹³C, and ¹⁹⁹Hg NMR spectra, and all observable coupling constants vary progressively with increasing *n* [5,14]. The same behaviour is found for the force constants K_R ; therefore an almost linear correlation is obtained between $\delta({}^{13}C)$, $\delta({}^{199}Hg)$, or ¹J(${}^{199}Hg-{}^{13}C)$, and the central carbon-metal stretching force constants. Since the stretching force constants K_d for the Hg-CN bonds pass through a minimum as a function of *n* (Fig. 2), the relationships of K_d to the corresponding NMR data, viz. $\delta({}^{13}CN)$, ¹J(${}^{199}Hg-{}^{13}CN)$, and ³J(${}^{199}Hg-{}^{13}CN)$, show also a minimum near n = 3. It is difficult to explain why

(Continued on p. 282)

7	Ś
Ц	1
BL	à
2	Ś
–	

= C.	•	
), (X		
(HeX)	
Η,	t	
ling C)	
spond	4	
corre		
of the		
sults c		
om re:		
en fro		
nd tak		
ned ai		
nstrai		
ere co		
ues w		
ed val		
ackete		
ES (br		
CULE		
IOLE		
N (7		
HgC		
1_{4-n}		
OR CI		
TS FC	-	
NAT	s [11])	
SONS	lecule	
SCE (lom (j	
5	-	

FORCE CONSTANTS Br, I) molecules [11])	FOR CH _{4 - n} (HgCN) _n	MOLECULES (brack	teted values were consi	trained and taken from	results of the correspondi	ng CH _{4-n} (HgX) _n (X = Cl.
Force constant	Coordinates involved	Common atom(s)	C(HgCN) ₄ (I)	CH(HgCN) ₃ (II)	CH ₂ (HgCN) ₂ (II)	CH ₃ HgCN ^d
Stretch						
K,	СН	I		4.753	4.815	4.770 "
K_R	CHg	I	1.798	1.944	2.149	2.445 a
K_d	HgC'	. 1	2.162	2.123	2.204	2.379 "
K_q	CN	I	17.246	17.477	17.277	17.273 a
Stretch – stretch						
F,	CH, CH	c	i	I	0.043	<i>"</i> 100'0
F_R	CHg, CHg	С	0.171	- 0.146	-0.292	<i>a</i>
F_d	HgC', HgC'	I	- 0.006	- 0.099	-0.171	<i>в</i> –
F_{Rd}	CHg, HgC'	Hg	(0.025)	(0.025)	(0.025)	- 0.372 "
F_q	CN, CN	1	- 0.012	-0.069	0.030	а –
Bend						
H _«	CH_2	1	!	ł	(0.313)	0.509 h
H_{β}	HCHg	Ι	i	0.569	0.589	0.460 ^b
H,	HgCHg		1.179	1.513	1.681	4 –

, v					0 5 3 0	0 606 0
•		J	110.0	0.430	670.0	2 505.0
	HgCN	I	0.216	0.180	0.223	0.199 b
. 'a	HgCN	I	0.216	0.210	0.219	0.199 %
retch – bend						
8	CH, HCHg	C-H	ı	0	0	0.174 °
. 10	CH, HCHg	c	I	I	0	0.174 °
88	CHg, HCHg	C-Hg	l	(0.116)	(0.098)	0.074 °
28/	CHg, HCHg	c	ţ	(-0.116)	(- 0.098)	J I
۲ ۲	CHg, HgCHg	C-Hg	(0.255)	(0.255)	(0.255)	J –
le Se	CHg, CHgC'	c	0	(-0.126)	(0.051)	о О
end – Bend						
	нснв. нсн _в	C-H	I	0.162	0.211	ч -
	нсн _g , нсн _g	C-Hg	I	ļ	0.233	0.014^{b}
	HgCHg, HgCHg	C-Hg	0.162	(0.130)	I	<i>q</i> –
2	нснв, нвснв	C-Hg	I	(0.048)	(0.048)	- p
	CHgC', CHgC'	c	0	0.007	0.051	- p
	CHgC', CHgC'	c	0	-0.043	-0.043	-0.028 ^b
	HgCHg, CHgC'	C-Hg	0.014	0	0	4 -
	HgCN, HgCN	ı	0	0.008	0.003	- p
	HgCN, HgCN	i	0	0.011	0.010	- 4
<i>,,</i> ,	HCHg, HCHg	I	1	I	0.162	<i>q</i> –

^a 10^2 N m⁻¹. ^b 10^{-18} N m rad. ^c 10^{-8} N rad⁻¹. ^d See ref. 9.

the NMR parameters for the atoms involved in the Hg–CN bonds vary progressively with increasing n, and the force constants K_d show a minimum for the metallomethanes so far studied [10].

Acknowledgements

J.M. thanks the Deutsche Forschungsgemeinschaft for a guest professorship and the University of Erlangen-Nürnberg for the facilities afforded during his stay. D.K.B. thanks the DFG and the Fonds der Chemischen Industrie for support.

References

- 1 W. Morell, Ph.D. Thesis, Erlangen (1976).
- 2 R. Sendelbeck, Diploma Work, Erlangen (1979).
- 3 J. Mink, Z. Meić, M. Gál and B. Korpar-Čolig, J. Organomet. Chem., 256 (1983) 203.
- 4 W. Kress, Ph.D. Thesis, Erlangen (1983).
- 5 D.K. Breitinger, W. Kress, R. Sendelbeck and K. Ishiwada, J. Organomet. Chem., 243 (1983) 245.
- 6 D. Grdenić, M. Sikirica and B. Korpar-Čolig, J. Organomet. Chem., 153 (1978) 1.
- 7 J.C. Mills, H.S. Preston and C.H.L. Kennard, J. Organomet. Chem., 14 (1968) 33,
- 8 J. Mink and L.M. Mink, "Computer Program System for Vibrational Analysis of Molecules", Erlangen (1983).
- 9 Y. Imai and K. Aida, J. Inorg. Nucl. Chem., 41 (1979) 963.
- 10 J. Mink, D.K. Breitinger and W. Kress, J. Organomet. Chem., 301 (1986) 1.
- 11 J. Mink, D.K. Breitinger, Z. Meić and M. Gál, J. Mol. Struct., 115 (1984) 435.
- 12 D.K. Breitinger, R. Neufert and M. Nowak, Z. Naturforsch. B, 39 (1984) 123.
- 13 J. Mink and B. Gellai, J. Organomet. Chem., 66 (1974) 435.
- 14 W. Kress, D.K. Breitinger and R. Sendelbeck, J. Organomet. Chem., 246 (1983) 1.